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UV spectral fingerprints, in combination with analysis of variance-principal components analysis
(ANOVA-PCA), can differentiate between cultivars and growing conditions (or treatments) and can
be used to identify sources of variance. Broccoli samples, composed of two cultivars, were grown
under seven different conditions or treatments (four levels of Se-enriched irrigation waters, organic
farming, and conventional farming with 100 and 80% irrigation based on crop evaporation and
transpiration rate). Freeze-dried powdered samples were extracted with methanol-water (60:40, v/v)
and analyzed with no prior separation. Spectral fingerprints were acquired for the UV region (220-380
nm) using a 50-fold dilution of the extract. ANOVA-PCA was used to construct subset matrices that
permitted easy verification of the hypothesis that cultivar and treatment contributed to a difference in
the chemical expression of the broccoli. The sums of the squares of the same matrices were used
to show that cultivar, treatment, and analytical repeatability contributed 30.5, 68.3, and 1.2% of the
variance, respectively.
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INTRODUCTION

Spectral fingerprinting is a rapid method for the comparison
and classification of biological materials. It has been acquiring
increasing attention in the field of metabolomics and agricul-
ture (1–8) and has been used for a wide variety of plants and
plant products, including grains, fruits, vegetables, wines,
honeys, teas, and herbal medicines. Genetic and environmental
factors influence metabolic pathways and produce different
patterns of chemical composition thereby causing variations in

the fingerprint. While fingerprinting allows differentiation based
on the overall pattern, identification of the specific components
causing the differences in the patterns is not the primary purpose.
The success of spectral fingerprinting is dependent on the
magnitude of the variation in the patterns induced by the
experimental factors as compared to the normal variation among
individual plants. With proper experimental design and data
processing, spectral fingerprinting can be a useful tool for
characterizing the sources of variation in plant materials (7, 9).

Spectral fingerprints are acquired from solid samples or
sample extracts with no prior separation. Consequently, spectral
fingerprints are the sum of spectra of every component present.
Spectral fingerprinting has been reported using a variety of
detectors but primarily those that provide high dimensional data
(i.e., many variables per sample) such as infrared (IR), near-
infrared (NIR), mass (MS), and nuclear magnetic resonance
(NMR) spectrometry (1–8). For MS and NMR, the high
dimensionality of the data is frequently used in the search for
the sources of the pattern variations, as is the case for
biomarkers. To date, molecular absorption (UV spectropho-
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tometry) has not been used for spectral fingerprinting of plant
materials, but rather, it has been used for quantification of
dissolved organic compounds (10). In general, the broad width
of the molecular absorption bands makes it difficult to distin-
guish contributions of specific components. Hence, the method
is generally not considered to have high information content.

Principal components analysis (PCA) is a multivariate data
analysis method that is frequently used to reduce the dimen-
sionality of the data set and to derive meaningful patterns from
the complex spectral fingerprints. It is suitable for high
dimensional and underdetermined (more sample variables than
samples) data (11, 12). In cases of multiple sources of variation,
however, PCA provides average solutions for the total variance
and is unable to characterize individual factors (11). Classical
analysis of variance (ANOVA) was designed to deconvolute
the variance and quantify the contribution of each experimental
factor (13). Harrington et al. (11, 14) have described an
ANOVA-PCA method that combines these two approaches. This
combination method partitions the data matrix into subset
matrices that correspond to each experimental factor. The
appropriate subset matrices are then submitted to PCA, which
provides an easily interpreted graphical plot. If the effect of
the experimental factor is large compared to the pure, or residual,
error, the data can be clearly separated on the horizontal axis;
that is, the first principal component provides clear differentia-
tion. Thus, the significance of an experimental factor can be
determined without factor analysis.

In this study, UV spectrophotometry (200-400 nm) was used
to obtain spectral fingerprints of broccoli (Brassica oleracea)
samples and ANOVA-PCA was used to analyze the data.
Broccoli was chosen as a test material because of the availability
of a set of partially characterized samples consisting of two
cultivars that had been subjected to widely differing treatments
(growing conditions) (15–17). Moreover, these broccoli samples
had been shown to have significant differences in levels of
phenolic acids, glucosinolates, and free amino acids. ANOVA-
PCA was used to test the hypothesis that genetic and environ-
mental conditions induced differences in the chemical compo-
sition of the broccoli that were detectable in UV spectral
fingerprints.

MATERIALS AND METHODS

Plant Materials. Samples were freeze-dried, and powdered com-
posites of two varieties of broccoli (Brasscia oleracea) Majestic and
Legacy were provided by Dr. John W. Finley (ARS, USDA) and Dr.
Gary Banuelos (ARS, USDA). Majestic variety broccoli was grown
with four different concentrations of sodium selenate (15). Ap-
proximately 2 weeks prior to the head formation, 10 mL of four
concentrations of sodium selenate (0, 0.17, 0.52, and 5.2 mM) were
applied to the developing plants every other day for 8 days; then 20
mL of sodium selenate solution from each respective concentration was
applied every other day for two additional applications. This treatment
with varying concentrations of sodium selenate resulted in 0.4, 5.7,
98.6, and 879.2 µg/gm of selenium (dry weight) in the broccoli florets.
In the text, the four selenium (Se) treatments are referred to as 0, 5,
100, and 1000 ppm, respectively.

Broccoli (B. oleracea, variety Legacy) was grown at two different
field sites in central California (Harris farms, Five Points, CA); one
field used conventional farming methods, and the other used a certified
organic field (15). Both farms represented typical organic and conven-
tional broccoli production in the Central California Valley Region,
where the soil type was classified as Panoche clay loam. Conventionally
and organically grown broccoli were planted by direct seed, and for
the first 30 days, water was applied with a sprinkler irrigation system.
After this interval, water was provided by surface drip irrigation (T-
tape drip line, T-Systems Int., San Diego, CA) for the remainder of

the season until harvest. Two irrigation levels were used representing
100 and 80% of the evapotranspiration rate based upon Westlands
California Irrigation Management Information System weather station
for the conventional grown broccoli. Organically grown broccoli was
raised using a single level of irrigation at 100% evapotranspiration rate.
No samples were available for organically grown broccoli at 80% of
the transpiration rate. We were not involved in the experimental design
and received the samples only upon completion of the experiments. In
the text, these three treatments are referred to as C100, C80, and Org,
respectively.

Broccoli plants were harvested for each respective treatment, and
crops were grown at least four times (15). Whole plants were separated
into leaf, stems, and florets. Frozen broccoli florets were then freeze-
dried and coarsely ground in the food processors. Ground samples were
kept below -20 °C. Prior to analysis or extraction, samples were sieved
through standard 20 mesh sieves (particle size <0.850 mm) to obtain
a uniform homogenized particle size sample.

Chemicals. HPLC-grade MeOH was purchased from Fisher Chemi-
cals (Fair Lawn, NJ). HPLC-grade acetone was purchased from Burdick
& Jackson (Muskegon, MI). Deionized water (18.2 MΩ · cm) was
obtained in-house using a Nanopure diamond analytical ultrapure water
purification system (Model # D11901, Branstead Intl., Dubuque, IA).
Polyvinylidene difluoride (PVDF) syringe filters with a pore size of
0.45 µm were procured from National Scientific Company (Duluth,
GA).

Extraction. The freeze-dried and powdered broccoli samples were
placed in a 16 × 125 mm2 screw cap vial with 5 mL of MeOH/H2O
(60:40, % v/v). The mixture was sonicated in a bath (Branson 2510,
Branson Ultrasonic Corporation, Danbury, CT) at 40 °C for 30 min.
The mixture was centrifuged (Model GT2, West Chester, PA) at a low
speed (5000 rpm) for 10 min. The supernate was transferred into a
separate vial, and the residue was extracted for two more times with
2.5 mL of fresh MeOH/H2O (60:40, % v/v). The volume of the
combined extract was adjusted to 10 mL with MeOH/H2O (60:40, %
v/v). All extracts were stored in 2 mL HPLC vials under nitrogen at
-70 °C until analyzed. An appropriate aliquot of each extract was
filtered using a PVDF syringe filter (pore size ) 0.45 µm) prior to UV
and MS analysis. Each of the seven treatments (0, 5, 100, 1000 ppm,
C100, C80, and Org) was extracted 10 times.

Data Acquisition. The Ultraviolet (UV) spectral fingerprints of
broccoli extracts were recorded on a Lambda 25 spectrophotometer
(Perkin-Elmer, Boston, MA). Extracts diluted by a factor of 50 were
used for spectral scans between 220 and 380 nm due to the strong
absorbance of the extracts in this region. Spectra were acquired for
each of the 10 extracts for each of seven treatments producing 70 spectra
for the UV and 70 for the visible region.

Data Analysis. All spectral data were converted to the American
Standard Code for Information Interchange (ASCII) files and exported
for chemometric analysis. Preprocessing of the data matrices was
performed on Excel (Microsoft, Inc., Belleview, WA) and PCA was
performed using Piroutte 3.1 (Infometrix, Inc., Bothell, WA).

The data were preprocessed for ANOVA-PCA as described by
Harrington et al. (11) and shown in Figure 1. The spectra were
transformed to the first derivative, smoothed using a seven point second
order polynomial (18), normalized to provide a unit vector (Matrix 3),
and then mean centered at each wavelength (Matrix 4). The mean
centered spectra for each treatment were plotted (not shown) and
examined for outliers. Two spectra were discarded because an incorrect
dilution was used and six were discarded because of anomalies in the
data. The anomalies were manifested as short (less than 15 nm)
excursions from the normal pattern (seen for the other samples of the
same treatment) in either a positive or negative direction.

The grand means (Matrix 4) were subtracted from the unit vector
data to obtain the grand means residuals (Matrix 5). The cultivar means
were computed (Matrix 6) and subtracted from the grand means
residuals to give the cultivar residuals (Matrix 7). The treatment
(growing condition) means (Matrix 8) were subtracted from the cultivar
residuals to give the treatment residuals (Matrix 9). The treatment
residuals represent the analytical error. The two matrices tested by PCA
were generated by adding the cultivar means and the analytical error
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(Matrix 6 + Matrix 9) and by adding the treatment means and the
analytical error (Matrix 8 + Matrix 9, i.e. Matrix 7).

The variance contribution of the experimental factors were computed
as follows: (1) the total variance, the sum of the squares around the
grand mean, was computed as the sum of the squares of the grand
means residuals (TSS, the sum of squared values for Matrix 5a), (2)
the variance between cultivars was computed as the sum of the squares
of the cultivar means (SSCM, the sum of squared values for Matrix 6),
(3) the variance within cultivars was computed as the sum of the squares
of the cultivar residuals (SSCR, the sum of squared values for Matrix
7), and (4) the variance between treatments was computed as the sum
of the squares of the treatment means (SSTM, the sum of squared values
for Matrix 8), and the variance within treatments was computed as the
sum of the squares of the treatment residuals (SSTR, the sum of squared
values for Matrix 9).

RESULTS AND DISCUSSION

The data for the two cultivars grown under seven different
conditions were analyzed initially using conventional PCA and
then with ANOVA-PCA to illustrate the difference in the
approaches. The data subsets for ANOVA-PCA were further
processed (as described in the Materials and Methods Section)
to quantify the variance contributed by each experimental factor
(cultivar and treatment) averaged over the entire spectra.

Conventional PCA. Figure 2 shows the object score plot
(2nd principal component as a function of the first principal
component) for PCA of the UV spectral fingerprints, which have
been transformed to the first derivative, smoothed using a seven
point second order polynomial, scaled to a unit vector, and mean
centered (Matrix 5). Five groupings are clearly discernible; the
four Se treatments (0, 5, 100, and 1000 ppm) for the Majestic
cultivar and the fifth composed of the Legacy cultivar. An object
score plot of only the Legacy data allows the organically grown
(Org) and the two conventionally grown (C100 and C80) to be
differentiated (plot not shown). In each case, three principal
components are needed to account for 85% of the variance. In
other words, a two, or sometimes three, dimensional plot is
needed to visually detect the separation of the different
treatments. Thus, conventional PCA shows that the cultivars

can be differentiated as well as the treatments. It is intuitive
from Figure 2, that the effect of the Se treatment is much greater
than the organic, conventional, or level of irrigation.

ANOVA-PCA. Figure 3 shows the object score plot for PCA
of the ANOVA test matrix for cultivar. The test matrix was
obtained by adding the cultivar mean matrix (Matrix 6) and
the pure error matrix (Matrix 9). In this study, the pure error

Figure 1. ANOVA preprocessing scheme. Terms are defined in the text, with integration over S (sample) and W (wavelength).

Figure 2. Object score plot for PCA of the UV spectral data without
ANOVA preprocessing. Data was derivatized, smoothed, scaled to unit
vector, and mean centered. The first two principal components account
for 85% of the total variation. The five groups correspond to 0, 5, 100,
and 1000 ppm and all the Majestic treatments (Org, C100, and C80) as
described in the text.

Figure 3. Object score plot for PCA of the UV spectral data with ANOVA
preprocessing comparing the Majestic and Legacy cultivars. The first two
principal components account for more than 90% of the total variation.
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corresponds to the analytical error, since the composites for each
of the seven sample treatments were extracted and analyzed 10
times. The distinction between the Legacy and Majestic broccoli
is clearly made on the basis of the separation on the first
component axis. The object score plot for PCA of the ANOVA
test matrix for all the treatments (Matrix 8 + Matrix 9) was
very similar to Figure 2. With the variance due to cultivar
removed, five groupings are clearly visible (0, 5, 100, 1000 ppm
and the treatments of the Legacy). The variance due to Se
treatment is much larger than that introduced by organic and
conventional farming. Comparison of the data in pairs produced
visually distinctive patterns. Figure 4 shows a series of object
score plots for PCA of different pairs of treatments. The data
were taken from the treatment test matrix. Each plot in Figure
4 shows a clear separation of the treatments on the first
component axis. In Figure 4D, the conventionally grown
broccoli was treated as one group; the treatment means were
calculated for C100 and C80 together. Every paired comparison
of the treatments (except conventionally and organically grown,
discussed below) showed results similar to those in Figure 4.

Figure 5 shows a comparison of organically and convention-
ally grown Legacy broccoli. As before, the conventionally grown
broccoli was treated as one group; the treatment mean was
calculated for C100 and C80 together. Separation on the first
component axis is achieved at the 95% confidence level.
Individually, the C100 and C80 are separated at the 95%
confidence level (Figure 6), and each is separated from the
organic treatment at the same confidence level.

Source of Variance. The matrices in Figure 1 can be used
to estimate the variance for each experimental factor using a
modified ANOVA approach. In this case, summation of the
squares of the data for each matrix serves to base the variance
calculation on the entire spectra. Table 1 shows that, for the
UV region (220-380 nm), 32.6% of the variance arises from

the cultivar, 67.4% arises from the treatment, and 1.2% is
because of analytical variance.

A single variable (one wavelength) can be used for classic
ANOVA. Instead of summing the variance for the UV spectra

Figure 4. A series of object score plots for PCA of UV spectral data with ANOVA preprocessing comparing: (A) 0 and 5 ppm; (B) 5 and 100 ppm; (C)
100 and 1000 ppm; (D) 1000 ppm and conventional (C80 and C100).

Figure 5. Object score plot for PCA of the UV spectral data with ANOVA
preprocessing comparing organic (Org) and conventionally grown (C100
and C80) broccoli. Ovals represents 95% confidence limits.

Figure 6. Object score plot for PCA of the UV spectral data with ANOVA
preprocessing for conventionally grown Legacy broccoli with irrigation at
100% (C100) and 80% (C80) of the transpiration rate. Ovals represent
95% confidence limits.
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with respect to wavelength (161 wavelengths from 220 to 380
nm), each wavelength can also be considered individually as
shown in Figure 7. Figure 7A shows the loading plot for the
total variance and Figure 7B shows the variable loading plot
for variance attributable to cultivar, treatment, and analytical
variability.

It can be seen that the percent of variance assigned to cultivar
and treatment is highly wavelength dependent. These two
sources vary inversely with a total of approximately 99% (the
1% being contributed by the analytical variance). In general,
wavelengths below 350 nm are more dependent on treatment
and higher wavelengths are dependent on cultivar. Interestingly,
the total variance plot shown in Figure 7, closely resembles a
UV spectrum of typical phenolic acids with absorption maxi-
mum at 245, 270, and 350 nm. The average for the whole spectra
(220-380 nm) presented in Table 1 represents the average for
all the wavelengths weighted by the total variance at each
wavelength.

The wavelength dependence of the source of variance
indicates that cultivar and treatments affect different compounds,
which absorb at different wavelengths. The UV spectra in this
study were measured for 60% aqueous methanol extracts; a
solvent mixture optimized for phenolic compounds would also
be effective for the extraction of glucosinolates. In general,
phenolic compounds show maximum absorption below 350 nm
and glucosinlates below 250 nm. Both phenolics and glucosi-
nolates are known to be highly influenced by environmental
conditions.

The broccoli samples analyzed in this study have been
previously characterized for secondary metabolites. Robbins et
al. (15) and Finley et al. (16) found that the phenolic (flavonoids
and phenolic acids) and glucosinolate concentrations were highly
treatment dependent. They found more flavonoids in Majestic,
more phenolic acids in Legacy, decreased glucosinolate con-
centration with increased Se fertilization, and decreased phenolic
and glucosinolate concentrations with organic farming and water
stress (C80). Lee et al. (17) showed that increasing Se
fertilization generally increased the free amino acid levels and
changed their relative concentrations. Since most amino acids
are transparent in the UV range, they would have little impact
on the spectra measured in this study. The variability of the
phenolics and glucosinolates are consistent with the ability of
the fingerprints to differentiate between treatments. No attempt
was made to correlate the secondary metabolite content with
the fingerprints using partial least-squares discriminant analysis.

It is logical to assume that there are some compounds that
are less sensitive to the environment and strongly linked to the
genetic makeup of the plant. If not, conventional breeding
programs would never be successful and cultivars would be
indistinguishable. Unfortunately, there has been no characteriza-
tion of the broccoli samples used in the study for major
metabolic constituents. These compounds were not considered
because few proteins, carbohydrates, and fats are extracted by
the 60% aqueous methanol solution and carbohydrates are
transparent in the UV. The data collected in this study do not
make it possible to identify families of compounds that might
be contributing to the dominant cultivar variance above 340
nm. UV spectrophotometry has neither the resolution nor the
dimensionality to permit identification of specific com-
pounds.

Conclusions. This study has shown that UV spectral finger-
prints can provide useful information for identifying the effect
of cultivar and treatment on broccoli. ANOVA-PCA provides
easily interpreted visual plots, and the matrices can be further
employed to calculate the variance contributed by each of the
experimental parameters. Together, UV spectral fingerprinting
and ANOVA-PCA provide a useful and very inexpensive tool
for the characterization of the sources of variance in plant
materials.
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